Fibroblast growth factor receptor signaling plays a key role in transformation induced by the TMPRSS2/ERG fusion gene and decreased PTEN
نویسندگان
چکیده
Prostate cancer is the most common visceral malignancy and the second leading cause of cancer deaths in US men. Correlative studies in human prostate cancers reveal a frequent association of the TMPRSS2/ERG (TE) fusion gene with loss of PTEN and studies in mouse models reveal that ERG expression and PTEN loss synergistically promote prostate cancer progression. To determine the mechanism by which ERG overexpression and PTEN loss leads to transformation, we overexpressed the TE fusion gene and knocked down PTEN in an immortalized but non-transformed prostate epithelial cell line. We show that ERG overexpression in combination with PTEN loss can transform these immortalized but non-tumorigenic cells, while either alteration alone was not sufficient to fully transform these cells. Expression microarray analysis revealed extensive changes in gene expression in cells expressing the TE fusion with loss of PTEN. Among these gene expression changes was increased expression of multiple FGF ligands and receptors. We show that activation of fibroblast growth factor receptor signaling plays a key role in transformation induced by TE fusion gene expression in association with PTEN loss. In addition, in vitro and in silico analysis reveals PTEN loss is associated with widespread increases in FGF ligands and receptors in prostate cancer. Inhibitors of FGF receptor signaling are currently entering the clinic and our results suggests that FGF receptor signaling is a therapeutic target in cancers with TE fusion gene expression and PTEN loss.
منابع مشابه
TMPRSS2-ERG fusion protein regulates insulin-like growth factor-1 receptor (IGF1R) gene expression in prostate cancer: involvement of transcription factor Sp1
Prostate cancer is a major health issue in the Western world. The most common gene rearrangement in prostate cancer is the TMPRSS2-ERG fusion, which results in aberrant expression of the transcription factor ERG. The insulin-like growth factor-1 receptor (IGF1R) plays a key role in cell growth and tumorigenesis, and is overexpressed in most malignancies, including prostate cancer. In this study...
متن کاملInduced chromosomal proximity and gene fusions in prostate cancer.
Gene fusions play a critical role in cancer progression. The mechanisms underlying their genesis and cell type specificity are not well understood. About 50% of human prostate cancers display a gene fusion involving the 5' untranslated region of TMPRSS2, an androgen-regulated gene, and the protein-coding sequences of ERG, which encodes an erythroblast transformation-specific (ETS) transcription...
متن کاملSignaling and Regulation Abnormal Expression of the ERG Transcription Factor in Prostate Cancer Cells Activates Osteopontin
Osteopontin (OPN) is an extracellular matrix glycophosphoprotein that plays a key role in the metastasis of a wide variety of cancers. The high level of OPN expression in prostate cells is associated with malignancy and reduced survival of the patient. Recent studies on prostate cancer (PCa) tissue have revealed recurrent genomic rearrangements involving the fusion of the 50 untranslated region...
متن کاملEts Related Gene and Smad3 Proteins Collaborate to Activate Transforming Growth Factor-Beta Mediated Signaling Pathway in ETS Related Gene-Positive Prostate Cancer Cells.
TGF-β/Smads signaling plays a significant role in the regulation of growth of normal and prostate cancer cells. Smad proteins function as important mediators of intracellular signal transduction of transforming growth factor-β (TGF-β). TGF-β signaling pathway is known to regulate cell proliferation, differentiation, apoptosis and play a major role in some human diseases and cancers. Following t...
متن کاملAndrogen-induced TMPRSS2:ERG fusion in nonmalignant prostate epithelial cells.
Fusion genes play important roles in tumorigenesis. The identification of the high-frequency TMPRSS2 fusion with ERG and other ETS family genes in prostate cancer highlights the importance of fusion genes in solid tumor development and progression. However, the mechanisms leading to these fusions are unclear. We investigated whether androgen, through stimulating its receptor, could promote spat...
متن کامل